911 research outputs found

    Relativistic Effects on Interchannel Coupling in Atomic Photoionization: The Photoelectron Angular Distribution of Xe

    Full text link
    Measurements of the photoelectron angular-distribution asymmetry parameter β for Xe 5s photoionization have been performed in the 80–200 eV photon-energy region. The results show a substantial deviation from the nonrelativistic value of β=2 and provide a clear signature of significant relativistic effects in interchannel coupling

    Compton double-to-single ionization ratio of helium at 57 keV

    Get PDF
    We have measured the Compton double-to-single ionization ratio of helium using an ion time-of-flight spectrometer along with monochromatized synchrotron radiation of 57 keV. This photon energy is high and probes the Compton ionization alone, since the photoionization makes only a negligible contribution to the total cross section. Comparing our result, which is (1.25±0.3)%, with theoretical calculations and measurements at lower energies shows that this energy is most likely still not high enough to confirm the value of the asymptotic high-energy limit experimentally

    Argon-photoion–Auger-electron Coincidence Measurements Following K-shell Excitation by Synchrotron Radiation

    Full text link
    Argon photoion spectra have been obtained for the first time in coincidence with K-LL and K-LM Auger electrons, as a function of photon energy. The simplified charge distributions which result exhibit a much more pronounced photon-energy dependence than do the more complicated noncoincident spectra. In the near-K-threshold region, Rydberg shakeoff of np levels, populated by resonant excitation of K electrons, occurs with significant probability, as do double-Auger processes and recapture of the K photoelectron through postcollision interaction

    Relativistic Hartree-Bogoliubov description of the deformed ground-state proton emitters

    Get PDF
    Ground-state properties of deformed proton-rich odd-Z nuclei in the region 59Z6959 \leq Z \leq 69 are described in the framework of Relativistic Hartree Bogoliubov (RHB) theory. One-proton separation energies and ground-state quadrupole deformations that result from fully self-consistent microscopic calculations are compared with available experimental data. The model predicts the location of the proton drip-line, the properties of proton emitters beyond the drip-line, and provides information about the deformed single-particle orbitals occupied by the odd valence proton.Comment: 9 pages, RevTeX, 3 PS figures, submitted Phys. Rev. Letter

    Interchannel Coupling in the Photoionization of the M-shell of Kr Well Above Threshold: Experiment and Theory

    Full text link
    Photoionization cross sections and asymmetry (β) parameters for Kr 3s, 3p, and 3d subshells have been measured and calculated in the 300–1300-eV photon energy range. Good agreement between experiment and theory is found for both cross-section branching ratios and β parameters. Interchannel coupling among the channels arising from 3s, 3p, and 3d subshells is found to be necessary for quantitative accuracy of the theory. This shows that the interchannel coupling phenomenology far above threshold, found previously for outer shells of Ne and Ar, is also operative for inner atomic shells

    Three-dimensional electron microscopy reveals the evolution of glomerular barrier injury

    Get PDF
    Open access articleGlomeruli are highly sophisticated filters and glomerular disease is the leading cause of kidney failure. Morphological change in glomerular podocytes and the underlying basement membrane are frequently observed in disease, irrespective of the underlying molecular etiology. Standard electron microscopy techniques have enabled the identification and classification of glomerular diseases based on two-dimensional information, however complex three-dimensional ultrastructural relationships between cells and their extracellular matrix cannot be easily resolved with this approach. We employed serial block face-scanning electron microscopy to investigate Alport syndrome, the commonest monogenic glomerular disease, and compared findings to other genetic mouse models of glomerular disease (Myo1e−/−, Ptpro−/−). These analyses revealed the evolution of basement membrane and cellular defects through the progression of glomerular injury. Specifically we identified sub-podocyte expansions of the basement membrane with both cellular and matrix gene defects and found a corresponding reduction in podocyte foot process number. Furthermore, we discovered novel podocyte protrusions invading into the glomerular basement membrane in disease and these occurred frequently in expanded regions of basement membrane. These findings provide new insights into mechanisms of glomerular barrier dysfunction and suggest that common cell-matrix-adhesion pathways are involved in the progression of disease regardless of the primary insult

    Validity of the Independent-Particle Approximation in X-Ray Photoemission: The Exception, Not the Rule

    Full text link
    A combined experimental and theoretical study of argon valence photoionization illustrates the discovery of the broad lack of validity of the independent-particle approximation (IPA) for x-ray photoemission. In addition to previously known breakdowns of the IPA, which are limited to high photon energies and regions very near threshold, the observed breakdown in photoionization at intermediate energies demonstrates generally that the IPA is valid only in very restricted domains. These restrictions are expected to be relevant throughout the periodic table, with consequences for a wide variety of applications
    corecore